Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 889: 164267, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209743

RESUMO

An important challenge today is to efficiently monitor the presence of polar pharmaceuticals and drugs in surface and drinking waters to ensure its safeness. Most studies rely on grab sampling techniques, which enable the determination of contaminants at a given point and given time. In this study, we propose the use of ceramic passive samplers (CPSs) to increase the representativeness and efficiency of organic contaminant monitoring in waters. Firstly, we have assayed the stability of 32 pharmaceuticals and drugs and found that five of those compounds were unstable. Moreover, we evaluated the retention capabilities of three sorbents (Sepra ZT, Sepra SBD-L, and PoraPak Rxn RP) in solid-phase extraction (SPE) mode and found no differences in terms of recoveries for all three sorbents. We then calibrated CPSs using the three sorbents for the 27 stable compounds over 13 days, with a suitable uptake for 22 compounds with sampling rates between 0.4 and 17.6 mL/day, which indicates high uptake efficiency. CPSs with the Sepra ZT sorbent were deployed in river water (n = 5) and drinking water (n = 5) for 13 days. Some of the studied compounds occurred with a time-weighted concentration, for instance, of 43 ng/L for caffeine, 223 ng/L for tramadol or 175 ng/L for cotinine in river water.


Assuntos
Água Potável , Poluentes Químicos da Água , Rios , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Cerâmica , Preparações Farmacêuticas
2.
Water Res ; 198: 117099, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33930794

RESUMO

There is growing worry that drinking water can be affected by contaminants of emerging concern (CECs), potentially threatening human health. In this study, a wide range of CECs (n = 177), including pharmaceuticals, pesticides, perfluoroalkyl substances (PFASs) and other compounds, were analysed in raw water and in drinking water collected from drinking water treatment plants (DWTPs) in Europe and Asia (n = 13). The impact of human activities was reflected in large numbers of compounds detected (n = 115) and high variation in concentrations in the raw water (range 15-7995 ng L-1 for ∑177CECs). The variation was less pronounced in drinking water, with total concentration ranging from 35 to 919 ng L-1. Treatment efficiency was on average 65 ± 28%, with wide variation between different DWTPs. The DWTP with the highest ∑CEC concentrations in raw water had the most efficient treatment procedure (average treatment efficiency 89%), whereas the DWTP with the lowest ∑177CEC concentration in the raw water had the lowest average treatment efficiency (2.3%). Suspect screening was performed for 500 compounds ranked high as chemicals of concern for drinking water, using a prioritisation tool (SusTool). Overall, 208 features of interest were discovered and three were confirmed with reference standards. There was co-variation between removal efficiency in DWTPs for the target compounds and the suspected features detected using suspect screening, implying that removal of known contaminants can be used to predict overall removal of potential CECs for drinking water production. Our results can be of high value for DWTPs around the globe in their planning for future treatment strategies to meet the increasing concern about human exposure to unknown CECs present in their drinking water.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Ásia , Água Potável/análise , Monitoramento Ambiental , Europa (Continente) , Humanos , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 755(Pt 1): 142377, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017759

RESUMO

The management of the anthropogenic water cycle must ensure the preservation of the quality and quantity of water resources and their careful allocation to the different uses. Protection of water resources requires the control of pollution sources that may deteriorate them. This is a challenging task in multi-stressed catchments. This work presents an approach that combines pesticide occurrence patterns and stable isotope analyses of nitrogen (δ15N-NO3-, δ15N-NH4+), oxygen (δ18O-NO3-), and boron (δ11B) to discriminate the origin of pesticides and nitrogen-pollution to tackle this challenge. The approach has been applied to a Mediterranean sub-catchment subject to a variety of natural and anthropogenic pressures. Combining the results from both analytical approaches in selected locations of the basin, the urban/industrial activity was identified as the main pressure on the quality of the surface water resources, and to a large extent also on the groundwater resources, although agriculture may play also an important role, mainly in terms of nitrate and ammonium pollution. Total pesticide concentrations in surface waters were one order of magnitude higher than in groundwaters and believed to originate mainly from soil and/or sediments desorption processes and urban and industrial use, as they were mainly associated with treated wastewaters. These findings were supported by the stable isotope results that pointed to an organic origin of nitrate in surface waters and most groundwater samples. Ammonium pollution observed in some aquifer locations is probably generated by nitrate reduction. Overall, no significant attenuation processes could be inferred for nitrate pollution. The approach presented here exemplifies the investigative monitoring envisioned in the Water Framework Directive.

4.
Environ Sci Pollut Res Int ; 26(16): 16076-16084, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30968295

RESUMO

A study of organic compounds that caused a serious taste and odor episode of water supply in two residential areas in Catalonia (N.E. Spain) was carried out. Sweet and paint/solvent odor were the main descriptors used by consumers. Some cases of sickness and nausea were also associated with drinking water consumption by the consumers. Closed-loop stripping analysis (CLSA) combined with sensory gas chromatography and gas chromatography mass spectrometry detection were used to study the problem. As a result, 3-(trifluoromethyl)phenol (CAS number 98-17-9) was for the first time identified as a responsible of an odor incident in drinking water. Concentration levels of this compound were up to 17,000 ng/L in groundwater and up to 600 ng/L in distributed water. Odor threshold in water for 3-(trifluoromethyl)phenol was determined as 13 ng/L (45 °C).


Assuntos
Cresóis/análise , Água Potável/análise , Odorantes/análise , Poluentes Químicos da Água/análise , Adulto , Água Potável/química , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Extração Líquido-Líquido , Masculino , Limiar Sensorial , Espanha , Paladar , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...